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Abstract

In this essay, the implications of quantum tunneling on a scalar field with two
distinct minima are presented. The analysis generalizes the WKB approximation for
N-dimensions, and follows previous work from Coleman and De Luccia. We find that
the tunneling process leads to the nucleation of true vacuum bubbles expanding at
the speed of light inside the false vacuum background. When gravity is considered,
not only the spacetime affects the creation of bubbles, but also the bubbles affect the
shape of the spacetime. The change in vacua creates different expansion rates inside
and outside the bubble. After tunneling takes place, outside the bubble there is a de
Sitter spacetime, while inside it creates an open FRW universe. Depending on the rate
of expansion of the false vacuum, there will be collisions of different bubbles. In the
last section, we calculate that the number of expected collisions for a universe like ours
is N ∝ (HiHf )

−2, being Hi,f the Hubble parameter inside and outside the bubble,
respectively.
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1 Introduction
In this essay, I will explain how a straight forward concept as Quantum Tunneling can lead to
big implications on our universe. For this, both Quantum Mechanics and General Relativity
will be combined throughout the calculations. This will take us to possible direct evidence
of fundamental theories which predict eternal inflation, such as String Theory.

However, we must start from the beginning. It is well known that in classical mechanics a
system will always follow the path of least action [1]. From there, we can get the equations
of motion (e.o.m.), which are used to study the evolution of the system after long periods of
time.
In physics, a fixed point is the value for which the system remains in equilibrium, and it is
given where the potential has vanishing slope. However, the stability of these fixed points
depends on how the system reacts to small perturbations. For instance, every minimum of
the function will be stable, while all the maxima will be unstable. Moreover, to go from
one minimum to another one, the system requires having enough energy to climb up the
potential barrier separating them both.

Even though this picture seems intuitively right, at the beginning of last century it was
shown to be incomplete. With the development of Quantum Mechanics, it was discovered
what we now call Quantum tunneling [2]. In this process, a state can travel through a po-
tential barrier which is more energetic than the system itself. This is forbidden in classical
mechanics, and the probability of this happening depends on the shape of the potential bar-
rier.

Therefore, I will start by introducing the mathematical techniques used to calculate the
tunneling rate in N-Dimensions, called the WKB approximation. This method works under
the assumption that the potential varies slowly. By taking the infinite limit of dimensions,
this technique can be applied to Quantum Field Theory.
The most important aspect from Quantum Field Theory is that it can be thought as an
infinite number of coupled harmonic oscillators [3]. Therefore, tunneling at one point of
space can affect its surroundings. We will work with a free scalar field in four-dimensional
spacetime with nonderivative interactions:

L =
1

2
∂µφ∂

µφ− U(φ), (1.1)

where L is the Lagrangian density, and U(φ) posses two relative minima, φ±, where only
φ− is an absolute minimum. Because of tunneling, we expect a system starting at the false
vacuum, φ+, to end up at the true vacuum, φ−. Therefore, the only stable fixed point of a
quantum system will be the global minimum. Moreover, the nucleated region will expand
throughout the field, creating a bubble of true vacuum inside the false vacuum background.
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However, any physical theory that does not consider the effect of gravity will be incomplete.
Even though its effect might seem negligible in this system, it does make a big difference
on the creation and evolution of these bubbles. This is because of the effect of a cosmo-
logical constant on the Universe. As we know, different vacuum energies provide different
geometries on our spacetime, and so lead to an expanding or contracting universe inside our
bubble, depending on the sign of the minimum.
The results presented in this essay are predictions of the eternal inflationary model. In the
same way that we can study the probability of having a bubble nucleated, we can further
study the probability of two different bubbles colliding.

Section 2 discusses the general formalism for studying barrier-penetration using the WKB
approximation. This method will be applied to QFT in Section 3, where the evolution
equation will be solved for the limit of small energy-density between the two vacua. In
Section 4, gravity will be included in the system, influencing the geometry of the different
vacuum regions. These results will be used to calculate the properties of tunneling inside a
de Sitter universe. In section 5, I will end up talking about the evidence we would expect to
find if we lived inside a nucleated bubble.

2 Tunneling in Quantum Mechanics
As the main focus of this essay is to apply the tunneling effect to QFT, we will introduce the
WKB approximation for N-dimensional quantum mechanics. For that, consider a particle of
energy E and mass m = 1 living in a N-dimensional space under the presence of a potential,
V (q). The particle is described by its wavefunction, ψ(q), satisfying the time independent
Schrödinger equation,

−~2

2
~∇2ψ + V (q)ψ = Eψ (2.1)

where ~∇ is the derivative with respect to each direction in space and ~ is the reduced Plank
constant. For complex potentials, such as the shown in Fig.1, it is very difficult to find
an exact equation for the wavefunction of this particle. However, advances were made by
considering the limit for slow varying V (q) [2]. With that, we expect the wavefunction to
have a general form:

ψ(q) αe−
u(q)
~ (2.2)

where u(q) can be found by solving the Schrödinger equation. Taking an infinite expansion
of terms such as

u(q) = uo(q) + ~u1(q) +O(~2) (2.3)

where uo relates to a free particle, which has u′′o = 0. In a square potential barrier case, this
would be the final solution. However, for a varying potential, the next terms can be found
by using perturbation methods and requiring each order in ~ to satisfy Eq. (2.1).
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Thus, we get the following WKB equations for N-dimensions:

~∇uo~∇uo = 2(V − E) (2.4)

~∇uo~∇u1 =
1

2
~∇2uo (2.5)

which are the equations that we must solve to find an approximation of the evolution of the
system, up to O(~2).

Figure 1: General potential with higher energy than the system itself. The region I is classically
forbidden, making the tunneling process happen from qo to ~σ.

In the simple case where N=1, we would proceeded by solving these equations and implying
continuity, what would give us the wavefunction. This should be straight forward, as there
is only one possible path to follow, given that the particle travels from left to right in a 1D
space. However, in the N>1 case, there are multiple paths with the same boundary terms.
This establishes an ambiguity on the direction of ~∇, making the calculation very hard to
solve.
For this, a further approximation was taken by Banks, Bender and Wu [4], where they in-
troduced the Most Probable Escape Path (MPEP). Instead of considering the weight of all
the possible paths by using standard path integral techniques, the measure is dominated by
the contribution of a given path. In the allowed region, this path will correspond to the
classical solution of the e.o.m., but in the forbidden region it will correspond to the MPEP.
This reduces considerably the problem’s complexity, as we just need to find this path and
integrate over it.
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For this derivation, I will follow the reference [5]. We will start the seek of the MPEP by
considering a curve Q(λ) ∈ RN . By defining a vector space around the curve, we find that
it has one tangent vector

v‖(λ) =
∂Q
∂λ

(2.6)

and N-1 perpendicular vectors
vi
⊥(λ) (2.7)

such that:

v‖·vi
⊥ = 0; vi

⊥·v
j
⊥ = δij for i,j ∈1,2,...,N-1 (2.8)

Therefore, we can express the differential operator in the curve as:

~∇|q=Q =
v‖∣∣v‖
∣∣2 (v‖· ~∇)|q=Q +

N−1∑
i=1

vi
⊥

|vi
⊥|

2 (v
i
⊥· ~∇)|q=Q (2.9)

which is just the projection of the differential operator on each direction of the vector space.
But so far, we have not made any approximation in order of finding the MPEP, for that we
will apply the following constraints

vi
⊥· ~∇u|q=Q = 0 for i = 1, 2, ..., N − 1 (2.10)

which defines the path to vary only in the tangent direction to Q(λ). Then, redefining the
differential operator to just act in that direction, we obtain:

d
ds

=
v‖∣∣v‖
∣∣ · ~∇|q=Q (2.11)

ds = |dQ| =
√

dQ
dλ

· dQ
dλ

dλ =
∣∣v‖
∣∣dλ. (2.12)

This solves the ambiguity mentioned before, as now we already have one preferred path to
integrate over. Therefore, the WKB equations (Eq. (2.4,2.5)) imply:

uo = ±
∫ s

ds κ(s) (2.13)

u1 =

∫ s

ds κ
′(s)

2κ(s)
=

1

2
ln(κ) (2.14)

where
κ =

√
2(V (Q)− E). (2.15)

Considering both solutions, the wavefunction will have the form:

ψ(q) ≈ 1

[|2(V (q)− E)|]
1
4

[
α+e

1
~
∫ s ds κ(q) + α−e

− 1
~
∫ s ds κ(q)

]
, (2.16)
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where α± are arbitrary constants which will be defined to satisfy the boundary conditions.
For instance, given a particle travelling from right to left, we find α+ = 0 and α− to be a
normalising factor. In the N>1 case, the integral is evaluated through the MPEP. But we
have not defined that path yet; for that, we will minimise uo by making small fluctuations
in the directions normal to Q, and then setting the difference to zero. After some algebra,
we find the expression

d2Q
dλ2

− ~∇V = 0 (2.17)

where λ is chosen to satisfy (
ds
dλ

)2

= 2(V − E). (2.18)

Therefore, we see that λ plays the role of the imaginary time. Similarly, for the classically
allowed region we find

d2Q
dt2

+ ~∇V = 0, (2.19)

which are just the e.o.m. of the system. Therefore, the MPEP corresponds to the e.o.m.
with imaginary time in the classically forbidden region. With this definition of the path, we
can now use our expression of ψ to describe the evolution of our system.

Studying the Eq. (2.16), we see that in the classically allowed region (E > V ), the solution
is an oscillating function; while in the classically forbidden region (V > E), there will be
an exponentially decaying function with growing |q|. These two regions will therefore be
well defined, but we must study how the solution behaves at the turning points from the
forbidden to the allowed region and vice versa.

The standard procedure consists on approximating the potential at the boundary to a linear
function [2], and so we can write

V (q)− E ≈ g(q − a) (2.20)

where g is a general constant and the turning point is located at q = a. By requiring the
wavefunction to be continuous and differentiable, we find the transmission rate to be:

Γ = Ae−B/~ [1 +O(~)], (2.21)

where
B = 2

∫ s

ds
√
2(V − E). (2.22)

with A being a normalising constant. We can tell that this expression simplifies to the square
barrier penetration for constant V (q) inside the forbidden region. Moreover, we find that
any kind of barrier penetration is exponentially suppressed. However, this is not a very
convenient expression to work with, given that solving this integral for general potentials
might take a lot of algebra. For this, in their original paper, Coleman [6] derived what he
called the Bounce.
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2.1 The Bounce
From Eq. (2.21), there are two important coefficients that will define the transition rate of
our system, A and B. Coleman and Callan dedicated one article to the calculation of the
coefficient A [7]. However, given that these transition rates will be applied to gravity, I won’t
focus on this aspect of their research. This computation would involve the evaluation of a
functional determinant, leading to the nonrenormalizability of the theory. Therefore, in this
section I will follow their work on how to express the B coefficient in a more convenient way.

The first thing that we must do, is to find the constraints that the MPEP applies in the
system, and so try to solve these equations for B. From Eq. (2.17), we know that the MPEP
is given by the path that satisfies the e.o.m. with imaginary time (τ). Therefore, given the
general potential in Fig.1, we have the following equations to follow:

d2q
dτ 2

=
∂V

∂q (2.23)

with
1

2

dq
dτ

· dq
dτ

− V = −E. (2.24)

As these equations are just an imaginary time version of the e.o.m., we can just describe the
system with the Euclidean Lagrangian LE,

LE =
1

2

dq
dτ

· dq
dτ

+ V. (2.25)

Now, defining the boundary terms as in Fig.1, the system begins at rest at q = qo and it
tunnels all the way up to q = ~σ. By solving the WKB equations, we find that the starting
point, qo, can only be reached asymptotically, as τ goes to minus infinity.

Provided that LE is explicitly independent of time, there is time invariance. This lets us
choose, without loss of generality, the imaginary time at which the tunneling takes place to
be τ = 0. Given that the energy must be conserved through the tunneling and V (qo) =
V (σ) = E, the following constraints apply:

lim
τ→−∞

q = qo

dq
dτ

∣∣∣∣
o

= ~0. (2.26)

From the MPEP we have that ds = dq and Eq. (2.24) implies

dq =
√

2(V − E)dτ.
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Then, by direct substitution in Eq. (2.22) we obtain

B = 2

∫ ~σ

qo

ds
√
2(V − E) (2.27)

= 2

∫ ~0

−∞
dτ (2(V − E)) (2.28)

= 2

∫ ~0

−∞
dτ [LE − E], (2.29)

where in the last line I used Eq. (2.24) with the definition of LE (Eq. (2.25)). Moreover,
we can tell that the equations of motion for positive τ are symmetrical to the ones we just
derived. Therefore, we expect the system to go back to q = qo in the limit where τ goes to
infinity.

With this, we define the full range integral as the Bounce. As we have a factor of 2 in front
of our tunneling rate, we can interpret B as being the the total Euclidean action for the
bounce,

B =

∫ ∞

−∞
dτ [LE − E] ≡ SE − SE(qo), (2.30)

where I have used the fact that the integral of the energy corresponds to the Euclidean
action of the stationary solution in which the particle does not tunnel. Therefore, to find the
coefficient B, we just need to find the bounce, which is the solution of the imaginary-time
e.o.m. obeying the constraints from Eq. (2.26). In the case where there are multiple bounces
solutions, the preferred will be given by the one with lower Euclidean action. This definition
of the bouce will be used in the next section to calculate the tunneling rate in a quantum
field.
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3 Tunneling in Quantum Field Theory
To generalise the results of the previous section to standard scalar quantum field theory,
first we need to prove that both theories are equivalent. For this, I will follow the ideas from
[5][8]. The best way of relating a quantum field to quantum mechanics is by studying the
action of a standard scalar field, φ(t, ~x), evolving under the influence of a general potential,
U(ψ). This is described by the action

S =

∫
dt
∫

d3x

[
1

2
φ̇2 − 1

2
(~∇φ)2 − U(φ)

]
(3.1)

where ˙ = ∂
∂t

and ~∇ is the space derivative in each direction. From this action, we can
compare the multidimensional Hamiltonin in quantum dynamics with the Hamiltonian of
the field:

H =

∫
d3x

[
1

2
π2 +

1

2
(~∇φ)2 + U(φ)

]
(3.2)

where the conjugate momentum is given by π = φ̇. As we know, the integral can be thought
as an infinite sum of the integrand, weighted by the measure. Moreover, we can describe the
field as {

φ(t, ~x ∈ RN)
}
= {φ(t, ~x1), φ(t, ~x2), ...} , (3.3)

which means that each point of the field can be thought to be a further three dimensions
in our quantum mechanical system. Given that we have infinite points in the space, we can
define this system as an infinite dimension quantum mechanics. In this sense, we see that
we should make the following generalisations:

1

2
~p· ~p =⇒

∫
d3x

1

2
π2 (3.4)

V (q) =⇒ V [φ] =

∫
d3x

[
1

2
(~∇φ)2 + U(φ)

]
, (3.5)

Figure 2: General potential with two minima.
Being φ− the true vacuum.

where the generalised potential, V [φ], will
be the one that determines the tunnel-
ing rate of the system. This makes the
problem to be less intuitive, given that
the potential now depends on the con-
figuration of the whole space. This is
what couples every point in our space-
time with each other. Now I will cal-
culate the tunneling rate of a scalar
field, and how a tunneled point influences
its surroundings. I will closely follow
[6].
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To apply these results to a quantum field, first we must make the substitutions introduced
above. Let this field to evolve under the effect of a general potential shown in Fig.2. The
whole field starts at rest in the false vacuum, φ = φ+, and we expect it to tunnel down to
the true vacuum, φ−. Its Euclidean e.o.m. will be given by(

∂2

∂τ 2
+∇2

)
φ = U ′(φ) (3.6)

where the boundary conditions are

lim
τ→±∞

φ(τ, ~x) = φ+
dφ
dτ

(0, ~x) = 0 (3.7)

Therefore, we conclude that the bounce is given by:

B ≡ SE − SE(φ+) =

∫
dτ d3x

[
1

2

(
∂φ

∂τ

)2

+
1

2
(~∇φ)2 + U(φ)− U(φ+)

]
(3.8)

and so, for B to be finite, we need a further constraint

lim
|~x|→∞

φ(τ, ~x) = φ+. (3.9)

This is a very nice condition, given that now both the boundaries and e.o.m. are invariant
under four-dimensional Euclidean rotations, corresponding to a SO(4) symmetry. By defining
ρ as

ρ =

√
τ 2 + |~x|2, (3.10)

the previous equations can be written as

d2φ

dρ2
+

3

ρ

dφ
dρ

= U ′(φ) lim
ρ→∞

φ(ρ) = φ+. (3.11)

B = SE − SE(φ+) = 2π2

∫ ∞

0

ρ3 dρ

[
1

2

(
dφ
dρ

)2

+ U − U(φ+)

]
(3.12)

where for the e.o.m. and the bounce the differential operators have been expressed in 4-
dimensional polar coordinates. The 2π2 factor in the bounce comes from integrating out the
angular coordinates.
However, before calculating the bounce, let me stop to revise the general picture so far. We
have discovered that tunneling will just occur for systems which can be described by the
bounce solution. In the coordinate system we are working with, τ runs over the positive
numbers, which will treat the problem as being in time reverse. Therefore, it starts at imag-
inary time τ = 0 at some initial value φ = σ, which in reality corresponds to the endpoint of
the tunneling. From there, when τ grows all the way up to infinity, φ reaches asymptotically
the false vacuum φ+.
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Figure 3: The potential energy for the me-
chanical analogy to Eq. (3.11), corresponding to
−U(φ)

The Eq.(3.12) can be interpreted as a free
standard action with some viscous damping.
This standard action would correspond to
the motion of a particle under the presence
of a potential given by −U(φ), such as in
Fig.3. With this, we can study for which
initial conditions the system will bounce to
φ+ when ρ → ∞. Even though the exact
solution for the allowed tunnels is model de-
pendant, we can still show that for a general
system there will always be a bounce solu-
tion [6]. Therefore, a particle under the in-
fluence of the potential −U can behave in
one of the following ways depending on the
initial conditions:

• Undershoot: In this case, the particle is not able to climb the potential up to φ+.
Demonstrating undershoot is trivial, for instance all the particles released between φ1

and φ+ (Region I in Fig.3) won’t have enough energy to climb up the hill. As the
damping term always diminishes the energy, there will be some values at the right of
φ1 which will also undershoot.

• Overshoot: These are the initial values for which the particle will eventually reach
φ+. To demonstrate overshoot, its useful to work near the true vacuum, φ−. For values
of φ very close to the true vacuum, we can linearise Eq. (3.11) to:(

d2

dρ2
+

3

ρ
− µ2

)
(φ− φ−) = 0, (3.13)

where µ2 ≡ U ′′(φ−).
We can choose φ to be initially sufficiently close to φ− such that it will stay arbitrarily
close to φ− for arbitrarily large ρ. However, from the equation above we see that for
sufficiently large ρ, the damping term can be neglected, and so we recover a classical
free particle under the effect of the potential −U(φ). As the energy at φ− is higher
than in φ+, the particle will be able to climb all the way up the hill, and so overshoot.

Given that both regions must exist for any generic potential with two minima, by continuity,
there must be a midpoint between φ1 and φ− for which particles will start overshooting.
As stated before, when we have overshoot it means that a tunneling from φ+ to σ will
eventually occur. However, finding the exact solution of the bounce for a generic potential is
not straightforward. Therefore, in the next section, I will introduce a further approximation
to describe the evolution of the field during and after tunneling.
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3.1 Thin-wall Approximation
This approximation expects the field to be constant both before and after the overshoot
takes place. Therefore, the tunneling process happens very quickly, at a given ρ = R. This
value of ρ will be where the field goes from the false vacuum to the true vacuum, making
the bounce much simpler to solve.

As we expect the field to be constant elsewhere, the description of the field evolution will
be:

φ =


−a for ρ� R

φs(ρ−R) for ρ ≈ R

a for ρ� R

(3.14)

where U(−a) = −ε � 1 (ε is assumed to be small for this approximation to be valid) and
U(a) = 0. The function φs(ρ) is a one dimensional soliton, which is the best description for
the variation of φ at the wall. A full definition of the soliton solution can be found in the
first chapter of Weinberg’s book [8].
We can tell that Eq. (3.14) is essentially a four-dimensional bubble of true vacuum (from
the SO(4) symmetry), surrounded by a thin wall. The only thing left to do is to calculate
the preferred ρ = R for which nucleation will take place. This is described by the MPEP, so
we must just solve the bounce integral:

B = 2π2

∫ ∞

0

ρ3 dρ

[
1

2

(
dφ
dρ

)2

+ U(φ)− U(φ+)

]
(3.15)

= 2π2

[∫ R−

0

ρ3 dρ(−ε) +
∫ R+

R−

ρ3 dρ

[
1

2

(
dφs

dρ

)2

+ U

]
+

∫ ∞

R+

ρ3 dρ(0)

]
(3.16)

= −1

2
π2R4ε+ 2π2R3Ss. (3.17)

The first term is the action of a true vacuum bubble of radius R and the second term comes
from the wall of this bubble, where Ss is the action of 1dimensional soliton. As the MPEP
corresponds to the path of least action, now just have to vary it with respect to R to find
the preferred tunneling value of ρ:

dSE

dR
= 0 = −2π2R3ε+ 6π2R2Ss. (3.18)

Hence,
R =

3Ss

ε
(3.19)

where we can see that for very small ε, it tends to infinity. We can make sense of this by
assuming that for ε = 0 there is no such a thing as true or false vacuum, and so tunneling
between both vacua won’t occur, given that both minima will be stable.
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After tunneling, the system enters the classically allowed region. From the MPEP equations
(Eq. (2.19)), it will evolve according to the classical field equation,

−−∂2φ
∂t2

+∇2φ = U ′(φ). (3.20)

Moreover, as the Euclidean space is equivalent to Minkowski with imaginary time, we have

φ(t = 0, ~x) = φ(τ = 0, ~x),
∂

∂t
φ(t = 0, ~x) = 0. (3.21)

We can see that the same function, φ(ρ), that gives the shape of the bounce in four-
dimensional Euclidean space also defines the system after the tunneling in ordinary 3+1-
dimensional spacetime. The O(4) symmetry has transformed into O(3,1) symmetry.
Therefore, the four-dimensional bubble living in Euclidean space transforms into a three-
dimensional bubble of true vacuum in the field space, where time plays an important role on
its evolution. This is because the bubble solution is fully defined by the value of ρ, and so
it must keep that definition after its materialization. Because of that, we have the following
constraint:

φ(t, ~x) = φ(ρ = (|~x|2 − t2)1/2), (3.22)

which comes from the fact that t2 = −τ 2. Therefore, we have a full description of the
evolution of the bubble by the condition

|~x|2 = R2 + t2, (3.23)

Figure 4: Evolution of the radius of a bubble
with nucleation radius R. We see that its expan-
sion describes an hyperbola, with a speed which
tends asymptotically to the speed o light (dashed
line)

which is the general equation of a hy-
perbola. We expect R to be a micro-
physical number, and so once the bub-
ble materializes, it begins to expand al-
most at the speed of light. An ex-
ample of this evolution can be found in
Fig.4.
During this expansion the energy of the
system must be conserved, so the loss
of energy inside of the bubble goes
to the kinetic energy of the expanding
wall.
This means that the only truly stable fixed
point will be φ−, and all the false vacuum
of the field will eventually tunnel to the true
vacuum, reaching the stable limit of the sys-
tem.
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However, it might seem a little bit ambiguous the fact that we can have different sizes of
bubbles being nucleated. As stated before, there is a full range of overshoot solutions in a
system, so there can be tunneling from the false vacuum to different field values at the other
side of the hill, which will have a potential energy U(σ). Each kind of tunneling solution
will be given at a certain ρ, that will correspond to the radius of the bubble in the thin wall
limit. As the energy during the tunneling must be conserved, the bubble must satisfy

4

3
R3U(φ+) =

4

3
R3U(σ) + Ewall, (3.24)

where Ewall is the energy stored in the wall.
As the bubble volume grows as R3 and the wall as R2, the final radius of the nucleated
bubble will be given by the combination which satisfies the conservation of energy.
Therefore, we can have a wide variety of bubbles being nucleated, these will have different
energy inside, and so different size. However, after the nucleation, the field inside the bubble
will evolve accordingly to its potential U , and so it will oscillate around φ− until it looses
enough energy to stay at rest in the minimum. In Fig.5 there are two examples of two
possible solutions to the same system.

In this section, we have derived how the B coefficient affects the nucleation and evolution
of a true vacuum bubble in Minkowski space. However, any physical theory which does not
contain gravity is incomplete. For that, in the next section, I will introduce how a curved
spacetime affects the results found in this section.

Figure 5: Two of the infinite number of paths through the potential barrier that connect the false
vacuum, φ+, with a configuration with the same energy on the other side of the hill, σ. In the
upper path, the bubbles are all the same size, but the field progresses up to the true vacuum. In
the lower path, the bubble is always on the true vacuum but expands. Credits:12th Chapter [8]
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4 The addition of Gravity
As one might expect, the vacuum decay takes place on scales at which gravitational effects
are negligible. However, once the bubble is nucleated, it will expand inside a universe, and its
speed will be affected by the geometry of the spacetime. Moreover, not only does gravitation
affect vacuum decay, but also vacuum decay affects gravitation.

In Quantum Field Theory, we only care about differences of energy, given that a constant
term in the action does not affect the equations of motion. However, in gravity this is not
the case, for instance the scalar field action now has the form:

S =

∫
d4x

√
−g
[
1

2
gµν∂

µφ∂νφ− U(φ)− 1

2κ
R

]
, (4.1)

where gµν is the spacetime metric, κ = 8πG and R is the curvature scalar. When gravity is
considered, adding a constant is like adding a term proportional to

√
−g to the Lagrangian,

which will have the effect of a cosmological constant.
It is well known that a scalar field resting at its minimum will create a cosmological constant
in the universe, and depending on its sign, will form a de Sitter(dS) or anti-de Sitter(AdS)
geometry. This means that the universe does care about the absolute value of the energy.
Thus, once the vacuum decays, the gravitational theory changes inside the bubble, and so
the cosmological constant inside will be different to the one outside, creating different ge-
ometries at both regions.

In this section, I will closely follow the calculations from Coleman and de Luccia[9]. The
method and system used will be the same as for QFT, but with few further terms inside the
action, which will give the gravitational effects to the solution.

We start by defining the metric of the Euclidean space provided by the false vacuum. For
this, we know that a cosmological constant preserves rotational symmetry, which will make
all the calculations much simpler to solve. Then, we define a radial curve to be a curve of
fixed angular coordinates, and so to be normal to the three-spheres through which it passes.
To measure distance along these radial curves we will choose the coordinate ξ, so the element
of length is of the form

(ds)2 = (dξ)2 + ρ(ξ)2(dΩ3)
2 (4.2)

where (dΩ3) is the element of distance on a unit three-sphere and ρ gives the radius of
curvature of each three-sphere. In flat space, ρ = ξ, so the radius of curvature is equivalent
to the radial curve. From this metric we can calculate the curvature scalar, and so introduce
it to the action stated above. As the procedure for calculating the bounce is the same as in
flat spacetime, we know that the bounce will depend on the Euclidean action of the system,
and so

SE = 2π2

∫
dξ
(
ρ3
(
1

2
φ′2 + U

)
+

3

κ
(ρ2ρ′′ + ρρ′2 − ρ)

)
. (4.3)
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To calculate the MPEP we must use the Euler-Lagrange equations, which gives the following
e.o.m.

φ′′ +
3ρ′

ρ
φ′ =

dU
dφ

, (4.4)

where ′ = d
dξ . This equation only differs from the flat space case in two things. First, the

independent variable is now ξ instead of ρ, which will be important for the growth of the
bubble after materialization. Secondly, the coefficient of the φ′ term involves a ρ′/ρ, instead
of 1/ρ. However, this is a trivial chance, since in the thin-wall approximation we neglect
this term, given that the field is constant at both vacuum regions. Moreover, solving the
Einstein’s Equation we find that

ρ′2 = 1 +
1

3
κρ2

(
1

2
φ′2 − U

)
. (4.5)

As we can see, gravity maintains the SO(4) symmetry of the bounce throughout the deriva-
tion. In last section, we found that this fact implied the materialization of a true vacuum
bubble after the tunneling. Thus, we shall also expect the creation of a bubble in this case,
whose properties can be calculated via the thin-wall approximation.

4.1 Thin-wall with gravity
As in the flat space case, this approximation expects the field to be constant both before
and after the tunneling takes place, at ρ = ρ̄. Therefore, the field can be divided into the
following three regions:

φ =


φ− for ρ� ρ̄

φs(ρ−R) for ρ ≈ ρ̄

φ+ for ρ� ρ̄

(4.6)

This definition will make much simpler to solve the integral of the bounce, which will give
the preferred value of ρ̄ when minimised.

First, we will simplify Eq. (4.3) by eliminating the ρ2ρ′′ term through integration by parts,
which will give:

SE =2π2

∫
dξ
[
ρ3
(
1

2
φ′2 + U

)
− 3

κ
(ρρ′2 + ρ)

]
=4π2

∫
dξ
(
ρ3U − 3

ρ

κ

)
, (4.7)

where in the second line I have made use of Eq. (4.5). This will be the action we will use to
find the value of the coefficient B = SE − SE(φ+).
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Thus, at each region we obtain:

• Outside: Given at ρ� ρ̄. At this region, the bounce and false vacuum are identical;
thus,

Bout = 0 (4.8)

• Wall: Given at ρ ≈ ρ̄. The solution will also correspond to a soliton; therefore,

Bwall = 2π2ρ̄3Ss, (4.9)

where Ss is the action of a one-dimensional soliton with boundaries at the values of
each vacuum in our potential.

• Inside: Given at ρ � ρ̄. Note that the line element inside the bubble won’t be the
same as the one outside, because the curvature comes from the cosmological constant
acting on the spacetime. As mentioned above, there will be different geometries at
each region, and so we need to redefine ξ before evaluating the integral. By using Eq.
(4.5), and noticing that φ is constant inside the bubble, we have that

dξ = dρ(1− 1

3
κρ2U)−1/2. (4.10)

Therefore, the difference between the bounce and the stationary action is

Bin =− 12π2

κ

∫ ρ̄

0

ρ dρ

[(
1− 1

3
κρ2U(φ−)

)1/2

− (φ− → φ+)

]

=
12π2

κ2

(
U(φ−)

−1

[(
1− 1

3
κρ̄2U(φ−)

)3/2

− 1

]
− (φ− → φ+)

)
. (4.11)

Adding the contribution from each region, we get the general expression for the coefficient
B in the decay rate. In the original paper, Coleman and de Luccia study the transitions
involving a Minkowski region, given that it was thought that our universe did not have a
cosmological constant. However, as the aim of this essay is to understand the universe we live
in, I will calculate the expression of ρ̄ for a tunneling transition between two dS spacetimes.
As we did in QFT, now we just need to add the contributions from each region and find the
value of ρ which minimizes it. After some algebra (shown in Appendix A), the stationary
point of B is:

1

ρ̄2
=
1

3
κU(φ−) +

(
ε

3Ss

+
κSs

4

)2

(4.12)

=
1

3
κU(φ+) +

(
ε

3Ss

− κSs

4

)2

(4.13)

where ε is the difference of energy between both vacua.
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Substituting this value for ρ̄ in the equation for the coefficient B, we get:

B = ρ̄3

[
2π2Ss −

12π2

κ2
U(φ+)

−1

(
ε

3Ss

− κSs

4

)3

+
12π2

κ2
U(φ−)

−1

(
ε

3Ss

+
κSs

4

)3
]
−

12π2

κ2
(U(φ+)

−1 − U(φ−)
−1) (4.14)

The behaviours of ρ̄ and B encodes all the information about how gravity affects the bubble
nucleation. The main difference in ρ̄ is that it does not diverges in the limit of small ε.
Moreover, from the expression on Eq. (4.12), it has a maximum value when the right-hand
side is at its minimum. This happens when the parenthesis vanishes, and so when

ε

3Ss

=
κSs

4
. (4.15)

At this point, the value for ρ̄ is

ρ̄ =

(
1

3
κU(φ+)

)−1/2

, (4.16)

which is not an arbitrary value, and its the most important requirement to maintain causality.
As the decay takes place on a dS spacetime, there must be an event horizon. This is a causal
limit, provided by the fact that the universe is expanding at an accelerated rate. Therefore,
some regions of the spacetime move away faster than the speed of light, and so they are
causally disconnected. The best way of calculating the event of horizon is by evaluating the
general metric of a spacetime under the effect of a cosmological constant (Λ) in 4-dimensions:

ds2 = −f 2(ρ)dt2 + f−2(ρ)dρ2 + ρ2dΩ2
2 (4.17)

where
f(ρ)2 = 1− ρ2

Λ

3
. (4.18)

and dΩ2 is the line element of a two-sphere. By solving these equations, one can find that
there is a coordinate singularity at ρ = (3/Λ)1/2. It takes a particle finite proper time,
but infinite coordinate time, to reach this radius[10]. Therefore, the event horizon must
correspond to ρ = (3/Λ)1/2.Thus, any two points which are further apart than this radius
are causally disconnected.
The important bit comes from the fact that a scalar field at rest in a minimum creates an
effective cosmological constant, given by

Λ = κU(φo). (4.19)

where
U ′(φo) = 0 and dφ

dt
|φ=φo = 0.
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Therefore, we find that the event horizon created by a scalar field resting at its minimum is
ρ = (3/κU(φo))

−1/2 which is the same result found at Eq. (4.15).
This is a very important statement, given that the event horizon delimits the size of the uni-
verse. There cannot be bigger bubbles nucleated because they would not fit in the universe
they live in. Moreover, if they were nucleated at a higher radius, causality would be broken.
This is because a change of vacua does transmit information, and so it could be used to
contact parts of the universe to which light cannot travel to; and therefore travelling faster
than the speed of light.

However, once the bubble is nucleated, the geometry of the spacetime will change. Therefore,
to stablish a coordinate system on the spacetime, we need to stop working with imaginary
time. In QFT, after calculating the bounce in Euclidean space we could come back to
Minkowski spacetime by analytic continuation. This was straightforward because the shape
of the space was constant before and after the tunneling, so we just needed to undo the
rotation to imaginary time. However, when gravity is considered, the energy of the scalar
field does change the geometry of the spacetime. Therefore, we expect the metric inside the
bubble to be different to the one outside.

4.2 Coming back to reality
As stated before, SO(4) symmetry of the bounce is maintained when gravity is included.
Therefore, the bounce solution does not only affects the tunneling rate of the system, but
also predicts the creation of a true vacuum bubble inside a false vacuum background.
We expect the bubble to expand as in the flat space case, where the speed of the walls will
asymptotically reach the speed of light. This will lead up to the point where the bubble
occupies all the region inside the future lightcones, as in Fig.4. However, in this case the
light-cones will have a different behaviour inside the universe, given that their path will be
influenced by the geometry of the spacetime.

For this, I will approximate the bubble to have the size of the future causal lightcone.
Therefore, the regions inside and outside the lightcones of the origin (i.e. the centre of the
bubble) must be treated separately. Outside the lightcone, the space is causally disconnected
to the bubble, so we expect it to keep on being a dS spacetime with metric:

ds2 = dξ2 + ρ(ξ)2dΩS
2, (4.20)

where the Euclidean
dΩ3

2 = dτ 2 + cosh2 τdΩ2
2

has been replaced by the Lorentzian

dΩS
2 = −dτ 2 + cosh2 τdΩ2

2,

which is the metric on a unit hyperboloid with spacelike normal vector.



4 THE ADDITION OF GRAVITY 21

In this coordinates, ρ = 0 stops being a point, and it delimits the whole hypersurface defined
by the lightcones of the nucleation point. Therefore, we see that these coordinates do not
cover the entire spacetime, but just the region outside the bubble.

Therefore, we must extend the coordinate system to inside the bubble. From the properties
of this region, we know that it is a finite extension of space that is expanding due to the
presence of the true vacuum energy. Moreover, the walls are moving outwards at the speed of
light. This means that any observer living inside this bubble can only reach assymptotically
the moving wall. Therefore, the best fit for this spacetime is an open Friedmann-Robertson-
Walker universe,

ds2 = −dt2 + a(t)2
(

dr2

1 + r2
+ r2dΩ2

)
, (4.21)

where a(t) is the scale factor that obeys the Friedmann equation:

ȧ2 = 1 +
κ

3
a2
(
1

2
φ̇2 + V

)
(4.22)

(with ˙= d
dt) and the scalar field satisfies:

φ̈+
3ȧ

a
φ̇ = −dV

dφ
. (4.23)

These are the MPEP equations for the classically allowed region, as expected. If the system
tunnels directly to the true vacuum, φ−, the scale factor will describe a dS universe, so
a(t) = H−1

− sinhH−t (where H− is the Hubble parameter for a dS universe at φ−). Inside the
bubble, there is no such a thing as a preferred location, and so the space is homogeneous and
isotropic. It is very important that the interior and exterior metrics join smoothly across
the boundary, which is given at the zero of a.

4.2.1 Picture a bubble

To better understand the geometry of the universe after a bubble materializes, it is very
useful to use Penrose diagrams. For that, we must find a compact set of coordinates for de
Sitter space.
Due to the SO(4,1) symmetry group of dS, it can be embedded in a 5-Dimensional Minkowski
space time. Taking coordinates Xµ for µ = 0, ..., 4, then the metric can be written as

ds2 = ηµνX
µXν .
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Now we just need to define the Xµ coordinates to satisfy the conformally compact properties
of Penrose diagrams. A useful choice is

X0 = tanT (4.24)

Xi =
sin η

cosT
ωi for i = 1, 2, 3 (4.25)

X4 =
cos η

cosT
, (4.26)

where (ω1, ω2, ω3) = (cosθ, sin θ cosφ, sin θ cosφ) stores the angular coordinates. The de
Sitter metric in these coordinates is

ds2 = 1

cos2 T
[−dT 2 + dη2 + sin2 ηdΩ2

2], (4.27)

with −π/2 ≤ T ≤ π/2 and 0 ≤ η ≤ π being the temporal and radial coordinates, respectively.

The Penrose diagram of this metric can be seen in Fig.6. In this picture, every vertical
grey line corresponds to timelike geodesics, while the horizontal ones define the surfaces of
constant conformal time. As we can tell, they do not agree everywhere, given the different
rates of expansion. However, every light ray goes at 45o in both regions of space. This is the
reason why the space inside the bubble protrudes the conformal square of the background.
If we want both regions to have the same null geodesics, then we can only compact one
of them. However, this lets us join both regions smoothly through the domain wall of the
bubble, which we can tell that expands at the speed of light.

Figure 6: Penrose diagram of the nucleation of a bubble inside a de Sitter background. An
observer at position (τ, ξ) inside the bubble could see a collision from a bubble that nucleated
at (T, η). Bubbles nucleated at the blue region, would not reach our bubble due to expansion.
Similarly, bubbles nucleated in the red region, would change the vacua of η = 0 before our bubble
is nucleated, and so tunneling would not take place, breaking the logic of this Penrose Diagram.
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Moreover, we know that in dS spacetime two points can be causally disconnected if their
future lightcones do not intersect. Therefore, if a second bubble materializes at the blue
region in the diagram from Fig.6, it won’t collide with the first one. But if a second bubble
nucleates in the white region, there will be a collision with the first one, leaving imprints
that can be observed from inside.
However, the rate of collisions will be affected by expansion because of the presence of hori-
zons. If the nucleation rate is very high, then bubbles will appear at a faster rate than the
universe expands, dominating the whole space and eventually giving rise to a true vacuum
universe. In the case where the nucleation rate is small, space would expand faster than
bubbles materialise, never reaching a full dominance of the true vacuum.
The next logical step is to wonder what would we see if we were living inside one of these
bubbles. Therefore, in the next section I will talk about the possibility of observing these
collisions from inside our universe.

5 Our Universe and Bubble Collisions
The proposal that our universe comes from a tunneling process was originally discarded
because no generic potential as the ones shown above could fit the entropy density in our
universe [8]. However, it was found that a non-generic potential could give very different
results[11][12]. If U(φ) has a flat region between the potential barrier and the true vacuum
minimum at φ− (Fig.7), then the slow-roll of scalar field could make the universe inside the
bubble to grow exponentially before the field comes at rest at the minimum, agreeing with
current observations.
The first attempts to predict anisotropies from bubble collisions in our universe was done
by Guth et al .[13]. In their paper, they assumed the rate of expansion inside and outside
the bubble to be the same. However, three years later, the calculations were repeated for
different rates of expansion at each region [14]. In this section, I will follow their work to
show the expected number of collisions that we should see in our night sky for a potential
such as Fig. 7. Moreover, I will focus on the case in which our potential has more than
one minimum to which the system can nucleate to. This is a picture that better agrees with
fundamental theories such as String Theory.

To make calculations on our universe I will use the picture of the space derived in last section,
and shown in Fig.6. The dS metric outside the bubble has an event horizon radius of H−1

f ,
while the space inside the bubble will begin in slow-roll inflation with an event horizon radius
of H−1

i . Using the Friedman equations, Hf,i is related to the potential energy of the field by

H2
f,i =

κ

3
U(φf,i), (5.1)

where κ = 8πG and φf,i are the values for which the system is at the false vacuum and at
the slow roll period in the potential, respectively.
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Figure 7: General potential energy that could describe the history of our universe from tunneling
transitions. Credit [15]

A convenient coordinate system that covers the region where collision bubbles can nucleate
is

ds2 = H−2
f

1

cosh2 χ
(dχ2 − dτ 2 + cosh2 τdΩ2

2) (5.2)

which is equivalent to the metric on Eq. (4.20), where ξ solves the equations

dξ
ρ(ξ)

= dχ, ρ(χ) =
1

Hf coshχ

Therefore, χ corresponds to the radial distance and τ to the conformal time. They both run
from −∞ to ∞. Equivalently, χ = ∞ bounds the region covered by this metric.
After a second bubble is nucleated at a given time τ , the distance between both bubbles
will change the behaviour of the collision. Therefore, the background geometry will have a
SO(2,1) symmetry. Thus, rotations around the radial curve connecting both bubbles will
leave the system invariant.

Inside the bubble, the metric is given by Eq. (4.21). Therefore, it can be described by an
homogenous and isotropic open FRW metric:

ds2 = a2(η)(−dη2 + dρ2 + sinh2 ηdΩ2
2) (5.3)

where a(η) is the scale factor, η is the conformal time inside the bubble and without loss of
generality we will focus on an observer at ρ = 0. As stated in last section, this metric must
be smooth all the way up to the big bang, where a(η) → 0.
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Therefore, as it has to agree with the background vacuum at the nucleation time, we expect
the scale factor to decrease as

a(η) ≈ 2

Hf

eη as η → −∞ (5.4)

where this expression comes from the fact that in a dS space-time, a(τ) = H−1
f sinhHfτ .

Now we can parametrize null rays propagating from outside to inside the bubble.

Figure 8: Diagram of the different regions of space once two bubbles are nucleated at (−∞, τ0)
and (χ1, τ1). The black coordinates, (χ, τ), and white region corresponds to the background de
Sitter, while red corresponds to the coordinates from inside the bubble, (ρ, η). Light rays are set
to move at 45o inside every region. The dashed line corresponds to the causal past of an observer
sitting in the centre of the bubble, (0, η0).

Consider a bubble that nucleates at some point in (χ, τ, θ, φ). The angular location will be
given by (θ, φ). Ingoing radial null curves propagating outside the bubble satisfy χ+ τ = c.
Similarly, inside the bubble they satisfy η + ρ = c, where c is an arbitrary constant. As
we want to compute the time it takes the collision to enter the backward lightcone of the
observer at ρ = 0, we have that

ηv = χ+ τ (5.5)
where ηv is the conformal time at which the the collision first becomes visible, as in Fig.8.
The probability to nucleate a bubble in an infinitesimal region is proportional to the 4-volume
of that region,

dN = ΓdV4 (5.6)
where Γ is the nucleation rate. By using the background system defined at Eq. (5.1) and
defining the dimensionless nucleation rate γ = H−4

f Γ, we get

dN = γ
cosh2 ηv − χ

cosh4 χ
dχdηvd2Ω2 (5.7)
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where I substituted the equality of Eq. (5.4) on τ . We might expect the integral to be
evaluated in the range −∞ < ηv < ηo (being ηo the present conformal time), which would
give an infinite number of bubble nucleated. However, the fact of having two different vacua
inside each bubble will create a domain wall propagating at almost the speed of light inside
the observation bubble. It is important to make calculations which are consistent with the
presence of observers, and so we expect this domain wall to go away from the observation
bubble after the collision. This is because it could disrupt structure formation throughout
its future lightcone.

To parametrize this, we adopt the following picture of the domain wall motion: we assume
the wall moves into the observation bubble at the speed of light for a time of order H−1

f .
Then, it bounces back after the collision, and moves away at the speed of light.
In the choice of coordinates we have been using, η = 0 corresponds to a time of order H−1

f .
Therefore, we will approximate the domain wall trajectory as null and ingoing for η < 0,
and null and outgoing for η > 0. Given the assumptions, we must evaluate the integral in
the range 0 < ηv < ηo, which gives:

N(ηo) =
8πγ

3
(sinh 2ηo + ηo). (5.8)

Now, we must look for an expression of the conformal time, ηo, for an observer inside one of
these bubbles. For that, following Weinberg’s book [16], the expansion of our universe can
be mainly divided in two parts:

• Slow-roll inflation: Given at times η < ηRH , where RH denotes for reheating. We
can approximate the slow-roll inflation by de Sitter space with Hubble constant Hi.
Recalling the definition of the conformal time, dη = dt/a(t), being t the proper time
of the observer, we can express the scale factor as a function of conformal time as

a2(η) =
1

H2
i sinh

2 η − log
Hf

Hi

(5.9)

where the logHf/Hi comes from the boundary condition imposed by Eq. (5.3). Defin-
ing the number of e-foldings (N) at reheating by aRH ≡ H−1

i eN , the conformal time
at reheating is

ηRH = log
Hf

Hi

− e−N ≈ log
Hf

Hi

(5.10)

for aRH � Hi and N � 1.

• After reheating: Given at times t > tRH . At this stages, the behaviour of the scale
factor depends upon which type of matter is dominating the expansion of the universe
at a particular epoch. In this sense, the scale factor would evolve as

a(t) = H−1
i eN(

t

tRH

)p (5.11)

where p = 1/2 or 2/3 for radiation or matter domination respectively.
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Integrating this expression to get the conformal time, we obtain:

η(t)− ηRH =
1

1− p

(
t

a(t)
− te
a(te)

)
(5.12)

which for times much larger than reheating and using the Friedman’s equation, we get to
the expression

ηo ≈ log
Hf

Hi

+ ζo
√
Ωk (5.13)

where ζo is the effective contribution from each dominating fluid over time and Ωk is the
curvature contribution to the total energy density. Substituting this into the expression for
the total number of collisions (Eq. (5.7)), we find

N ≈ 4πγ

3

[(
Hf

Hi

)2

e2ζo
√

Ωk(t) + 2 log
Hf

Hi

+ 2ζo
√
Ωk(t)

]
. (5.14)

Given that our in our universe Ωk(t0) � 1 and also Hf/Hi � 1, we get

N ≈ 4πγ

3

(
Hf

Hi

)2

. (5.15)

While one expects γ � 1, observational constraints require (Hf/Hi)
2 ≥ 1012. Therefore,

there is a very wide range of fine-tuning that can satisfy the physical observations.
This result creates a very useful framework for future calculations. From this, we learn that
the number of expected collisions we must observe depends on the rate of expansion of our
universe and the false vacuum background. Moreover, any observer living inside one of this
bubble universe is able to see collisions at some point, which is a prediction of the eternal
inflation theories with multiple minima, such as String Theory [17].

The calculation presented in this section is only the starting point of this area of study.
During the whole essay, I have been trying to work model independently, which is useful
for the qualitative picture of the evolution of the universe. However, when we take less
assumptions and for instance we stop working in the thin wall limit, the equations become
very model dependent. On one side, it makes all the calculations very difficult and tedious
to solve, so finding an analytic expression of the solution is almost impossible task to do.
However, on the other side, by using simulations we can get very good estimations of the
effect that certain potentials can have on our observations, which will vary notably depending
on the model. A lot of advancement has been done in this field in the last years, see references
[18][19][20].
Given that the solution is model dependant, it will be easy to discard wrong potentials
from observations once we have our predictions. Therefore, by comparing the simulations
with reality, we will start constraining the range of valid potentials that can be driving the
expansion of the universe.
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6 Conclusion
This essay has presented an analysis of the evolution of a dynamical scalar field with two
different minima, one being the global minimum. Even though the idea might seem simple,
we found the implications that these kind of systems could have on our universe. Giving us
an accurate description of the shape of our spacetime and having big implications on the
validity of String Theory.

We started by describing how quantum mechanics changed the whole understanding that
classical physics had from this kind of potentials. From there, we found that quantum tun-
neling breaks the stability of all the non-global minima, making it to be unstable at long
times. This was generalised to Quantum Field Theory, given that it can be described as a
quantum mechanical system of infinity dimensions.
For low energy difference, we found that with each tunneling, there is a bubble of true vac-
uum being nucleated. Depending on where the system tunnels to, it can materialise with
different radius. Once it comes to existence, the bubble starts expanding with a speed which
increases asymptotically to the speed of light.

It was very important to consider gravity given that a scalar field can change the geometry
of the spacetime. A positive potential energy creates an expanding de Sitter universe, while
a negative energy would create an anti-de Sitter universe. Similarly, for vanishing energy,
we recover Minkowski geometry, and so calculations would agree with those from QFT.
From this, we found that inside the bubble there will form an open FRW universe, surrounded
by the original dS background. Moreover, there is a maximum bubble radius, given by the
event horizon of the background. Depending on the rate of nucleation, we might expect
collisions of different bubbles. Therefore, in the last section we tried to describe the effect of
these collisions for an observer inside one of the bubbles.
In this picture, we have an expanding dS universe inside the bubble, which would correspond
to our universe. After finding a suitable coordinate system, we calculated the number of
expected collisions that an observer inside the bubble can measure at a given conformal
time, ηo. After calculating the estimated proper time for our universe, we found:

N ≈ 4πγ

3

(
Hf

Hi

)2

. (6.1)

Depending on the properties of the impact, the collision can create from small anisotropies
in the CMB to big temperature patches on our night-sky.
The best predictions have been done via numerical methods, which will let us compare
simulations with our own universe. This will have a big impact on Sting Theory, which
predicts a potential with multivalued minima. Moreover as these collisions depend on the
nucleation rate and the expansion of the false vacuum, we can use our predictions to start
constructing the shape of the effective potential that is driving the expansion of our universe.
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However, to have a deeper and more complete understanding of tunneling, we must consider
two important aspects from quantum mechanics not covered in this essay: resonant tunnel-
ing and thermal effects. Even though it has been shown that resonant tunneling cannot exist
on QFT [5], it would be worth studying how gravity could affect this result. Moreover, it is
well known that a dS universe has a finite temperature from quantum effects, the so called
Gibbons-Hawking temperature [21]. This could create a thermal nucleation of bubbles [22],
which would not materialize through tunneling. However, there can be a combination of
these two effects to give thermal assisted tunneling [23], which would influence the calcula-
tions presented in this essay.
Moreover, even though we just worked on dS→dS tunneling, we can apply these techniques
to different spacetimes. For instance, we can stop working with maximal symmetric spaces
by considering the presence of matter, which will have big implications on strong gravity
limits, such as black holes. However, to study these implications, it is convenient to use dif-
ferent techniques to the ones used in this report, which come directly from String Theory [24].

Even though there is much left to discover, this essay has presented one of the most impor-
tant ideas of cosmology. The main axioms of modern cosmology are that the laws of physics
are homogeneous and isotropic. However, the existence of structures shows that these sym-
metries broke at some point in our universe. So far, we have a good understanding on how
these anisotropies formed, but we still treat the expansion to be homogeneous everywhere.
This makes sense, given that we do not have enough evidence to think otherwise. However,
recent studies seem to be pointing to the possibility of this homogeneity to be also broken
[25]. Although there is no scientific consensus on these results, we shall wonder how this
effect might be produced just in case some day we find it to be the case. For this, the con-
ceptual ideas of how to study the different regions of expansion will be the same to the ones
shown in this essay. For every geometry of the universe, we can find a non-homogeneous
scalar field that might be driving the different rates of expansion.
Finding that the expansion of the universe is not homogeneous and isotropic would change
the whole picture of modern cosmology. However, the work presented in this paper would
be key to understand the properties of the spacetime.

The problem of the expansion of our universe has been in the frontline of physics for decades,
and getting to the truth of the inflation is a very hard process that might take a few decades
more. Until there, the focus of cosmology should be in the study of which conditions we
need the last theory to satisfy, and so far, we have found that scalars fields give a very
good description. To be strict with our analysis, we must bare in mind that we live in a
quantum-like universe, and so we shall expect scalar fields to also behave in this manner,
leading up to the creation of expanding bubbles of different vacua. Further measurements
and research will give better constraints on the description of the possible potentials driving
our expansion, placing us a step closer to the fundamental nature of our universe.
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Appendices

A ρ̄ in dS→dS tunneling
As stated in Section 4, I closely follow the derivations from Weinberg [8]. However, the cal-
culation of the expression for ρ̄ is not included in his book. Therefore, I thought of including
it in this paper to show a direct proof of this result.

To find the expression for ρ̄, we just need to minimize the B coefficient. Summing over the
contributions from each region, we get the expression

B = 2π2ρ̄3Ss +
12π2

κ2

(
U(φ−)

−1

[(
1− 1

3
κρ̄2U(φ−)

)3/2

− 1

]
− (φ− → φ+)

)
.

Then, differentiating with respect to ρ̄:

∂B

∂ρ̄
= 0 = 6π2ρ̄2Ss +

12π2

κ2

[
κρ̄

(
1− 1

3
κρ̄2U(φ−)

)1/2

− (φ− → φ+)

]
.

Now, we just need to solve this equation. For that, it will be convenient to use the following
redefinitions

Λ± =
1

3
κU(φ±), S̄ =

κ

2
SS.

With this, the above expression takes the form:

−ρ̄2S̄ = ρ̄[(1− ρ̄2Λ−)
1/2 − (1− ρ̄2Λ+)

1/2].

Squaring at both sides and moving the ρ̄2 factors to the left hand side (LHS) we obtain

ρ̄2(S̄2 + Λ+ + Λ− − 2ρ̄−2) = −2(1− ρ̄2Λ−)
1/2(1− ρ̄2Λ+)

1/2.

To remove square roots of the RHS, we will square at both sides once again. Treating each
side separately will make the calculation to be less messy. Then,

LHS =ρ̄4(S̄2 + Λ+ + Λ−)
2

=ρ̄4S̄4 + ρ̄4(Λ+ + Λ−)
2 + 4− 4ρ̄2(Λ− + Λ+) + 2S̄2ρ̄4(Λ− + Λ+ − 2ρ̄−2),

RHS =4− 4ρ̄2(Λ− + Λ+) + 4ρ̄4Λ−Λ+.
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Cancelling equal terms ant both sides and knowing that (a+ b)2 − 4ab = (a− b)2, we find

0 = ρ̄4S̄4 + ρ̄4(Λ+ − Λ−)
2 + 2S̄2ρ̄4(Λ− + Λ+ − 2ρ̄−2)

Then, defining ∆Λ = Λ+ − Λ−

4

ρ̄
= S̄2 +∆Λ2S̄−2 + 2(Λ− + Λ+)

We can complete the square in the RHS either using Λ− or Λ+, which will give two different
solutions:

1

ρ̄2
=Λ− +

(
∆Λ

2S̄
+
S̄

2

)
=Λ+ +

(
∆Λ

2S̄
− S̄

2

)
.

Finally, undoing back the redefinitions, we obtain the desired result:

1

ρ̄2
=
1

3
κU(φ−) +

(
ε

3Ss

+
κSs

4

)2

=
1

3
κU(φ+) +

(
ε

3Ss

− κSs

4

)2

,

where ε = U(φ+)− U(φ−).
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